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Abstract For a class of nonlinear evolution equations, their global attractors are studied and the existence of their
inertial manifolds is discussed using the truncated method. Then, on the basis of the properties of operators of the atmo-
sphenc equations, it is proved that the operator equation of the atmospheric motion with dissipation and external forcing
belongs to the class of nonlinear evolution equations. Therefore, it 1s known that there exists an inertial manifold of the
atmospheric equations if the spectral gap condition for the dissipation operator is satisfied. These results furnish a basis
for further studying the dynamical properties of global attractor of the atmosphenc equations and for designing better nu-
merical scheme .
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[ i
7140 show that the atmo-

Results of qualitative theory on the nonlinear atmospheric dynamics
sphere system, whether it is dry or moist, whether there is a topographic effect on it or not, and
whether its external {forcing is stationary or non-stationary, will evolve to a global attractor as time in-
creases. The long-time behavior of solutions of the system depends on the global attractor, and points
out of the attractor, which have nothing to do with the asymptotic state of the system while time tends
to infinity, have only transient sense. The existence of the atmosphere attractor reveals that there is a
nonlinear adjustment to external forcing in the system, and that the asymptotic behavior of solutions of
the full atmospheric dynamical equations can be accurately described by a finite-dimensional ordinary
differential equation, which furnishes necessary mathematical and physical foundations for setting and
designing the models of long-term numerical weather forecast and numerical climate forecast. This at-
tractor, however, may be a fractal and an unsmooth manifold. Moreover, its speed of attraction for or-
bits of solutions of the system is not exponential. These bring some difficulties for further dynamical
analysis and practical computation. Therefore, it is important to find an invariant smooth manifold
which contains the global atiractor and attracts all the orbits of solutions of the system with exponen-
tially speed. This is another important basic concept of inertial manifold for characterizing asymptotic
properties of solutions apart from the concept of global attractor in the studies of infinite-dimensional

{15—17

dynamical system in recent years . There are significant senses not only for analyzing dynamical

properties on global attractor, but also for designing reasonable discretization numerical scheme in

* Project supported by the Project on Mechamsm and Prediction Theory of Heavy Climate Disaster in China and the State Key

Project on Dynamics and Prediction Theory of Climate .



370 SCIENCE IN CHINA (Series D) Vol. 42

investigations on inertial manifold. It is natural to ask whether there exists an inertial manifold in the

atmospheric equations or not. The question is mainly discussed in this paper.
1 Definition of inertial manifold

Definition 1.  Assume that the semigroup operator { S( )} =0 has a global attractor A. Then
subset M, c H (H is a Hilbert space) is called an inertial manifold of A if it satisfies
(i) M, is a finite-dimensional smooth manifold (at least a Lipshitz manifold) ;
(ii) M, is invariant, i.e.
S(e)M; ¢ My (1)
(iii) M, attracts all the orbits of solutions for semigroup {S(¢)},., with exponential speed,
namely for uy& H there exist constants k;, k, >0 such that
dist (S(t)ug, M;) < kie™®', ¥i = 0; (2)
(iv) the global attractor A of S(¢) is on M,.

2 Attractors and manifolds of a class of nonlinear evolution equations

2.1 A class of nonlinear evolution equations
Given a Hilbert space H with inner product (+,*) and norm | * |, we study a class of nonlinear

evolution equations as follows:

9, 15+ R() = 0, (3)
where
R(9) = 8/B(9,9) + 6,B(9,8) + 8;49 - f, (4)
where &, (i=1,2,3) satisfy
6, =0o0rl, and &, + &, = 1. (5)

The case for 8, = 0 has been discussed'> 7}, but the case for 8, =1 is first presented and investi-
gated in this paper. The linear operator L is an unbounded positively definite self-adjoint operator in
H, D(L) is dense in H, and L' is compact. The mapping $—> L9 is an isomorphism from D (L)
onto H. Let L' be s powers (s ©R) of L, and then the spaces V,, = D(L’) are Hilbert spaces with
the following inner products:

(81,95),, = (L'9,,L9,), ¥,,9, € D(L°), (6)
g€ V,. Let
191, = (8,07 (7
Since L~'is a compact self-adjoint operator, it follows from the Rellich inferencel 5™ that
there exist an orthonormal basis fwj} j=1 and the eigenvalues A; of L in H such that
Lw; = Jw;, (j =1,2, ) (8)
O<hishe ™ <X<hus (9)
limd; = + . (10)
From (8) and (9), it is eaS); to obtain
I L7729 1z 272191, ¥y9 € D(L'?), (11)
| L7291z A2 1 D91, ¥ € DI, ¥s. (12)
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Letting P = Py be an orthogonal projection from H to Span{w;, ", wyl, Qy=1- Py, one has
MiplslIpligAylpl, p€ PD(L), (13)
[ Lg 1= An, 1 g1y, ¢ € QD(L). (14)
B(9,9) and B,(3,9) are bilinear operators of D(L) x D(L)—>H, and A is a linear operator of
D(L)—H. Suppose that B(9,9), B,(9,8) satisfy

(6,B(9,9,) + 6,B,(8,9,),9,) =0, ¥v8,9, € D(L), (15)
| B(8,8) I< € 1 0121 LY29 (V2 LV29, 1V ) L, 1Y%, v 9,9, € D(L), (16)
[ B(8,9) 1< Cy 1 L9121 L2912, v 0,8, € D(L). (17)
Then A satisfies one of the following properties:
A 1< Cy 1 LV*9 ), ¥ € D(L), (18)
A9 1< Cu | LY*O 12 ) L9 1Y%, v € D(L). (19)
Additionally, B, B, and A also have the continuity properties:
| LY?B(9,9,) < Cs | LY V1 L9, |, ¥ 8,8, € D(L), (20)
[ LY2B(89,0,) < Col LO 121 L9, 12, v 8,8, € D(L), (21)
[ L?49 1< C, 1 I8 1, YO € D(L), (22)

where C; (i=1,"",7) are positive constants. Besides, assume that 4 + L is positively definite,
i.e. there exists a constant Cg >0 such that
((A+1)9,9) = Cg | LV?*9 12, vO € D(L). (23)
If A is anti-adjoint, i.e.
(49,8) =0, v9 € D(L), (24)

then it is obvious that (23) is true. However, A in (23) may not be an anti-adjoint operator.

2.2  Global atiractor
We now consider the initial-value problem of (3), namely (3) has the following initial condi-
tion :
8(0) = 9, € H. (25)
Assume that there exist a unique solution S(t)9,€ D(L) (Y t &R*) for the initial-value problems
(3) and (23). The mapping S(¢) has properties of semigroup as usual.
Based on the properties of the operators mentioned above, one has the following lemma.
Lemma 1. For any initial value 9, H, there are pg, p; and p, which depend on Ay, |fI
and | LY*f1 such that
lim sup | 9(¢) 1% < p3, (26)

P

lim sup | L'?9(¢) 1* < pf, (27)

PR

lim sup | L9(s) I* < p3. (28)

Lemma 1 implies that any solution of (3) will run respectively into the following balls after some
time t =7 >0:

By = {90 € H, | 91< 203 (29)
B, = {9 € D(LV?), | L'*9 | < 20} (30)
B, = {9 € D(L), | LY | < 2p,}. (31)
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Thus we have Theorem 1.
Theorem 1.  There exists a global attractor 4 in (3). It is a limiting set of B,, i.e.
A= w(B,) =N US(t)B,, (32)

520 t=s

where the closure is taken in H, and we have
4 C BN B N B (33)
2.3 Inertial manifold
Here we discuss inertial manifolds of (3) by use of the truncated method of ref. [15]. Assume
that #(s) is a smooth function of * —[0,1];

1, s € [0,1];
{6(8) - {0, 5 = 23 (34)
18 (s) 1< 2, s = 0.
Fix p =2p,, and define
0,(s) = 0(s/p), s = 0. (35)
Then the truncated equation of (3) is
Z—f+LL9+F(!9)=0, (36)

where F(u)=6,(l L31)R(S). Clearly, when | L9l <p, Hp( [LI1) =1, and in this case (36)
is accordant with (3). When | LI =2p, Gp( (191) =0, and in this case making the inner product
for the two sides of (36) with L?9, one obtains
1d 2 2_ 1 d
AR A T
Therefore, orbit 9(¢) is exponentially convergent to the ball whose radius p;=2p in D(L).

Let p(t)=P9,q(t) = Q9. Then p and ¢ in PH and QH satisfy

LY 12+ 2,1 LP?9 12 < 0. (37)

%f + Ip + PF(3) = 0, (38)
93+Lq+ QF(9) = 0, (39)

de

where 9 = p + ¢, and the inertial manifold M; = Graph( @), i.e. it is got by the graph of the

Lipschitz mapping @: PD{L)— QD(L). The mapping ® is obtained by the fixed point of the func-
tion space H, ;. The definition of the function space H, ; is as follows.

Definition 2.  H,, is a function space of the Lipschitz mapping @ : PD(L)— QD (L) satisfy-

ing
| L&(p) I< b, b > 0 is undetermined,p € PD(L); (40)
| L& (p) - LD (py) < I 1 Ipy = Lps |y 1 > 0, pyypy € PD(L); (41)
supp® c {p € PD(L) || Lp | < 4pl. (42)
Introduce
H @1 - @2 H = pzlll)g) I L@1(P> - L(I’z(P) I (43)

Then H, ,is a complete metric space.
For ®€ H, ;, we define an inertial mapping T of PD(L):

T®(p,) = —jo e QF(9)dr, po € PD(L), (44)
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where 9(z) = p(z;P,po) + @(p(z;P,py)), p(r;P,py) is a solution of (36) satisfying p
(3@, po) = po. Hence, for (3) one has Theorem bl

Theorem 2.  Suppose that operators A, B, B, and L satisfy (8)—(16), (20)—(23), and
(18) (or (19)), 0< I < 1/8, and that there exist constants Ny, K, and K, (which depend on |
and intial values) satisfying N = Ny, Ay, = K, and the spectral gap condition Ay,, - Ay = K.
Then there exists b >0 such that

(i) T maps H, ,into H, 3

(ii) T has a fixed point in H, ,;

(iii) M, = Graph(®) is an inertial manifold of (3);

(iv) M, contains the global attractor of (3).

3 Inertial manifold of the atmospheric equations

3.1 Description of the equations

In coordinate (A,8,p), the atmospheric equations of large-scale motion are as follows'' ™

Ju ( ctgl ) 1 d¢
8;+Au+ 20cosf + . “””‘asinea/\“Ll“‘o’ (45)
d J
—v+Av—(2\QC()s@+ﬂgﬁu)u+L—¢+L]v = 0, (46)
dt a a 30
d
2 Rr oo, (47)
P p
1 (9_u avsinﬁ) Jaw
asinf\ax * 36 ap = O (48)
R*3aT R? R R ¢
Gt AT - Jer LT = C’ (49)
where
u d v d d
A= asmfax t a8 " wJp’
J d s )
Li:—g(;la—,uiv" (L=1,2),
I, = v,(gp/RT)* (i =1,2),
J d 92
2. 1 = sinf ~= !

T asing 30°"7 96 T o2sin?0 9A2

C* = RT(y,-7)/g,
T =T(p) is the mean temperature over isobaric p surface, T the deviation from T, $ the deviation
from ¢, e the diabatic heating, and other symbols are meteorologically as usual. The domain of solu-
tions of the equations is 2 = S2x (p,y, P,), 0< py< P < ®, where p, is a certain small positive

number, and P, the atmospheric pressure on the earth’s surface. The boundary value conditions are

p = po» (Qu/dp,dv/dp, w, IT/Ip) = 0, (50)
p:ps,u:v:wzo, (51)
aT/3p = a (T, - T), (52)

where T, is the temperature on the earth’s surface, «, a parameter related to the turbulent thermal

conductivity. We only discuss the case of the homogeneous boundary value condition of (52), i.e.
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dT/dp = - a,T. (53)
For the non-homogeneous case, it may be discussed by using homogeneous transformation. Here we
do not consider the topographic effect, so $(A,8,P,) =0.
The initial value condition is

(u,0,T) 1,_0 = (u'9,®, 7)Y, (54)

From (48) and the boundary value conditions, one has
w(2,0,p) = - JP’(aw/a,,)dp - JP’((au/a/l + Jvsind/30)/asind)dp.  (55)
Similarly, one has p P
$(1,0,p) =-J:Ta¢/8p)dp =—-[;(R77p)dp- (56)

Equations (45)—(49) are essentially the equations of three variable u,v and T, i.e. (45),
(46) and (49), where w and ¢ are given by (55) and (56). Therefore, by introducing the vector

function
9 = (u,v,(R/C)T)T, (57)
eqs. (45)—(49) can be written as the following operator equation :
a
LR + 19 =0, (58)
where
R(®) = B(8)9 + B,(9)8 + 49 - ¢, (59)
L = diag(L,,L,,C*L,/R?), (60)
A, uctgf/a 0
B(8) = | - uctgh/a A, 0, (61)
0 0 A,
. d d a
B,(8) =dlag(a)$,wa—;,wé—];). (62)
When A is a linear operator,
) 128 )
Aﬂ‘(ﬁ’*asinea/\"f’”aae"p“’ , (63)

018 = [ [+ g e (- o 2 B - B ]

where w and ¢ are given by (55) and (56), i.e.
P
w;(A,0,p) = —J "((u;/73A + Jv,5in6/360)/asind)dp, (i = 1,2),
P

P
8,2,6,p) == | (RT/p)dp, (i = 1,2),
p
u J v 9
Ap = asin0 9x T @ 20’
£ = (0,0,Re/(CC,))". (66)
The diabatic heating € is given and stationary in this paper, and at this same time there exists a

unique solution for the initial-boundary value problems (45)—(54)[%’. A semigroup S(t) is there-
fore defined by the operator equation (58) for the initial value 9(0) = .

(65)
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3.2 Properties of operators
Let H be a Hilbert space (taking H = L,(2) in the following parts), D(L) the domain of def-
inition of operator L corresponding to the boundary value conditions (50), (51) and (53) (being
marked as D,,). Then D(L) = {919€ €C*(Q2), D,,!, where D(L) is a linear dense set.
Lemma 2. Operator L is symmetrical , namely,
(L8,,8,) = (9,,L9,), V9,9, € D(L). (67)
Lemma 3.  Operator L is self-adjoint .

As is easily seen, one has

(L9,8) = 0, (68)
for 9€ D(L). Furthermore, there exist constants C,, C, >0 such that
(L9,9) = G llol,, (69)
(LIB,L?)Z CzHl9[[09 (70)
where
ol = Cllall3e+ lolld+ I THE), (71)
follog=Cllul?+ Toll?2+ [ TV, (72)

where | + || , takes the H'(Q)-norm, || * || the L,(£2)-norm. Therefore, we have Lemma 4.
Lemma 4.  Operator L is positively definite, i.e. there exists C >0 such that
(L8,8) = C(8,8), VY9 € D(L), (73)
where the equality is true if and only if 9 =0.
Based on the above analyses, L is a self-adjoint positively definite linear operator. Thus one can
introduce a new inner product in D(L) as follows:
(9,,8,) = (L8,,9,). (74)
This yields a new norm
ol = (9,917 = (L9,9)'*, 9 € D(L). (75)
A new complete Hilbert space can be got by taking the closure of D( L) according to (75) . Obvious-
ly, D(L) is dense in H,. Using the positively definite property of L, one has
Iolly< Cilol,, o€ D(L). (76)
H, is therefore embedded in H.
More generally, let Lf be s powers (s € 3) of L, and the spaces H,, = D(L*) be the Hilbert
spaces with the following inner product:
(91,8202, = (L9, L%9,), V8,9, € D(L*), (77)
S€ H, . Besides,
ol = (9,9 (78)
Lemma 5. The inverse operator L ™" of operator L is compact .
Proof. For Y f€ H, there exists a unique solution ¥ = L™ 'f of L9 = fin D(L). And using
lolh?< €(L9,9) = C(f,9),
one has
ol s c sl (79)
L~ is therefore a bounded linear operator of H—> H,. In addition, the embedding from H, to H is
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compact, so L™ 'is compact.
L~ is a self-adjoint compact operator because both L and L' are self-adjoint. It follows that
there exists an orthonormal basis | WJ} j=1 and the eigenvalues p) ;>0 of L and A ;> A ;+1 such that

LWy = AW, (j=1,2,). (80)
Let Ak=/ij_]. Then one has
LW, = AW;, W, &€ D(L), (j = 1,2,), (81)
O<Ahishas " sAsiags s (82)
limd; = o, (83)

jw
Therefore, L has properties the same as those of (11)—(14).
For operators B, B, and A we have Lemma 6.

Lemma 6.
(3(19’91)4'31(‘9’191),!91) = 0, (84)
(48,9) = 0. (85)
Let
B(9,9,) = B(9)9, (86)
B, (9,98,) = B,(8)0,. (87)

Then both B(9,9,) and B,(9,9,) are linear operators of D (L) x D(L)—> H. Thanks to the
Holder inequality and the Sobolev embedded inequality, we have Lemma 7.
Lemma 7. There exists a constant C, >0 such that

| B(9,9) 1< C ol 1ol o 11720 1372, (88)
where
Forly=Clulld+ Told+ T35 (89)
According to the Friedrichs inequality, one has
lwl < Kl dw/apll, (90)
where constant K; > 0. Moreover, using the Minkowski inequality, one has
lwll < K(huly+1oly). (91)
Similarly, one can get
Il < K, llagsapl, (92)
¢l <K, Il RT/CHl, (93)

where constant K, > 0. Additionally, thanks to the Schwarz inequality, we have Lemma 8.
Lemma 8. There exist constants k, K >0 such that
|Bl(l9v’91)‘$kHl9H1H l91”1a (94)
VA9 1< Kl O, (95)
3.3 Inertial manifold
It is easy to see that Lemma 1 is true for eq. (58) because operators in (58) satisfy the proper-
ties of operators in (3) according to lemmas 2—8. Furthermore, Theorem 2 is true for eq. (58) if
the spectral gap condition is satisfied. This shows that there exist an global attractor and an inertial
manifold M, in the atmospheric equations (45)~—(49) under that condition, and the inertial manifold
contains the attractor and attracts all the orbits of solutions of eqs. (45)—(49) with exponential
speed.
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4 Conclusion

Global attractors and inertial manifolds of a class of nonlinear evolution equations are studied in
this paper. And it is proved that the atmospheric equations just belong to this kind of nonlinear evolu-
tion equations, and that there exists an inertial manifold of the atmospheric equations if the spectral
gap condition for the dissipation operator is satisfied. These results furnish a basis for understanding
further the dynamical construction and characteristic of the global attractor of the atmosphere because
the inertial manifold is an invariant smooth manifold which attracts all the orbits of solutions with ex-
ponential speed. Additionally, we may use the existence of inertial manifold to design a better numer-
ical scheme to simulate precisely the long-term variation of the atmosphere. If there exists an inertial
manifold M., (here 7 is the time stepsize) in the discretization numerical scheme designed and M.,
—> M, as t—>0, this kind of numerical scheme is able to simulate precisely the long-term behavior of

solutions of the original equations. This will be reporied in another paper.
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